Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38558338

RESUMO

With the extensive development of nuclear energy, soil uranium contamination has become an increasingly prominent problem. The development of evaluation systems for various uranium contamination levels and soil microhabitats is critical. In this study, the effects of uranium contamination on the carbon source metabolic capacity and microbial community structure of soil microbial communities were investigated using Biolog microplate technology and high-throughput sequencing, and the responses of soil biochemical properties to uranium were also analyzed. Then, ten key biological indicators as reliable input variables, including arylsulfatase, biomass nitrogen, metabolic entropy, microbial entropy, Simpson, Shannon, McIntosh, Nocardioides, Lysobacter, and Mycoleptodisus, were screened by random forest (RF), Boruta, and grey relational analysis (GRA). The optimal uranium-contaminated soil microbiological evaluation model was obtained by comparing the performance of three evaluation methods: partial least squares regression (PLS), support vector regression (SVR), and improved particle algorithm (IPSO-SVR). Consequently, partial least squares regression (PLS) has a higher R2 (0.932) and a lower RMSE value (0.214) compared to the other. This research provides a new evaluation method to describe the relationship between soil ecological effects and biological indicators under nuclear contamination.

2.
Environ Res ; 237(Pt 2): 116950, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660876

RESUMO

Uranium pollution in groundwater environment has become an important issue of global concern. In this study, a strain of Desulfovibrio desulfuricans was isolated from the tailings of acid heap leaching, and was shown to be able to remove uranium from water via biosorption, bio-reduction, passive biomineralization under uranium stress, and active metabolically dependent bioaccumulation. This research explored the effects of nutrients, pH, initial uranium and sulfate concentration on the functional groups, uranium valence, and crystal size and morphology of uranium immobilization products. Results showed that tetravalent and hexavalent phosphorus-containing uranium minerals was both formed. In sulfate-containing water where Desulfovibrio desulfuricans A3-21ZLL can grow, the sequestration of uranium by bio-reduction was significantly enhanced compared to that with no sulfate loading or no growth. Ungrown Desulfovibrio desulfuricans A3-21ZLL or dead ones released inorganic phosphate group in response to the stress of uranium, which associated with soluble uranyl ion to form insoluble uranium-containing precipitates. This study revealed the influence of hydrochemical conditions on the mineralogy characteristics and spatial distribution of microbial uranium immobilization products. This study is conducive to the long-term and stable bioremediation of groundwater in decommissioned uranium mining area.

3.
Environ Res ; 236(Pt 2): 116795, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541412

RESUMO

Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.


Assuntos
Estruturas Metalorgânicas , Urânio , Poluentes Químicos da Água , Humanos , Água , Adsorção , Poluentes Químicos da Água/análise
4.
Membranes (Basel) ; 13(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36984686

RESUMO

In the event of uranium release into the environment due to an accident, confirming the presence of uranium contamination is difficult because uranium is a naturally occurring element. In this study, we developed a method based on X-ray fluorescence (XRF) for the facile screening of uranium in brackish water samples in the event of an accident in a coastal area. Graphene oxide nanosheets were added to uncontaminated brackish water sampled from different sites to adsorb the uranium present in the samples, if any. The graphene oxide nanosheets were then collected using a membrane filter and analyzed using XRF. The results revealed that the signal intensity of the U Lα peak was proportional to the salinity. Hence, uranium contamination could be confirmed when the intensity of the U Lα peak was significantly greater than that derived from the background uranium content, as estimated from the salinity value. Thus, in the event of an accident, the salinity of the collected brackish water should be measured, and XRF analysis should be performed using our developed method. This method is useful for screening brackish water for uranium contamination.

5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006314

RESUMO

Objective To prepare 4-sulfonylcalix[6]arene-modified cotton fibers for adsorption and removal of uranium based on the specific complexation of calix[6]arene with uranium (VI). Methods Chemical grafting was used for the modification of cotton, which reacted with α-bromoisobutyryl bromide, glycidyl methacrylate, and 4-sulfonylcalix[6]arene. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FTIR) were used to characterize the structure of 4-sulfonylcalix[6]arene-modified cotton (Cotton S-C[6]a). A Franz diffusion cell was used to simulate uranium-contaminated skin. Laser fluorimetry was used to determine the uranium content. Results SEM, XPS, and FTIR showed that cotton fibers were successfully grafted with 4-sulfonylcalix[6]arene. The optimal conditions of Cotton S-C[6]a for the adsorption of uranium (VI) was pH 4.0, duration of 20 min, and 20 mg of adsorbent. The adsorption process fitted well with pseudo-secondary-order kinetics. The uranium removal efficiency of Cotton S-C[6]a was up to 78.46% in aqueous solution and 81.72% on skin. Conclusion The synthesized Cotton S-C[6]a is highly efficient in the removal of uranium (VI) in solution and on contaminated skin.

6.
J Environ Radioact ; 241: 106773, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34781090

RESUMO

With the extensive exploitation of nuclear energy and uranium, the problem of uranium-contaminated soil is becoming increasingly prominent. In recent years, various technologies for remediation of uranium-contaminated soil have emerged, such as bioremediation, physical remediation and chemical remediation. Bioremediation technology has the widespread attention because of its environmental friendliness, low cost and high economic benefits. This paper mainly reviews the evaluation index of uranium-contaminated soil, soil remediation technology and its advantages and disadvantages, introduces especially the research status of soil bioremediation technology in detail, and puts forward some suggestions and prospects for bioremediation of uranium-contaminated soil.


Assuntos
Recuperação e Remediação Ambiental , Monitoramento de Radiação , Poluentes do Solo , Urânio , Biodegradação Ambiental , Solo , Tecnologia , Urânio/análise
7.
Environ Int ; 145: 106107, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932066

RESUMO

Uranium contamination is a global health concern. Regarding natural or anthropogenic uranium contamination, the major sources of concern are groundwater, mining, phosphate fertilizers, nuclear facilities, and military activities. Many epidemiological and laboratory studies have demonstrated that environmental and occupational uranium exposure can induce multifarious health problems. Uranium exposure may cause health risks because of its chemotoxicity and radiotoxicity in natural or anthropogenic scenarios: the former is generally thought to play a more significant role with regard to the natural uranium exposure, and the latter is more relevant to enriched uranium exposure. The understanding of the health risks and underlying toxicological mechanisms of uranium remains at a preliminary stage, and many controversial findings require further research. In order to present state-of-the-art status in this field, this review will primarily focus on the chemotoxicity of uranium, rather than its radiotoxicity, as well as the involved toxicological mechanisms. First, the natural or anthropogenic uranium contamination scenarios will be briefly summarized. Second, the health risks upon natural uranium exposure, for example, nephrotoxicity, bone toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and pulmonary toxicity, will be discussed based on the reported epidemiological cases and laboratory studies. Third, the recent advances regarding the toxicological mechanisms of uranium-induced chemotoxicity will be highlighted, including oxidative stress, genetic damage, protein impairment, inflammation, and metabolic disorder. Finally, the gaps and challenges in the knowledge of uranium-induced chemotoxicity and underlying mechanisms will be discussed.


Assuntos
Água Subterrânea , Exposição Ocupacional , Urânio , Fertilizantes , Mineração , Urânio/análise , Urânio/toxicidade
8.
Chemosphere ; 250: 126315, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234624

RESUMO

Uranium (U) is both chemically toxic and radioactive. Uranium mill tailings (UMTs) are one of the most important sources of U contamination in the environment, wherein the mechanisms that control U release from UMTs with different granularities have not yet been well understood. Herein, the release behaviours and underlying release mechanisms of U from UMTs with five different particle size fractions (<0.45, 0.45-0.9, 0.9-2, 2-6 and 6-10 mm) were studied with a well-defined leaching test (ANS 16.1) combined with geochemical and mineralogical characterizations. The results showed that the most remarkable U release unexpectedly emerged from UMT2-6 mm; in contrast, the smallest particle size UMT<0.45 mm contributed to the least U release. The predominant mechanism of U release from UMT2-6 mm was the oxidative dissolution of U-bearing sulfides, while abundant gypsum present in UMT<0.45 mm inhibited U release. The study highlights the importance of combined geochemical and mineralogical investigation when performing leaching tests of mineral-containing hazardous materials such as UMTs with consideration of particle size effects. The findings also indicate that elevating the content of gypsum and avoiding the oxidation of sulfides can effectively help immobilize and minimize the residual U release from the UMTs.


Assuntos
Urânio/química , Poluentes Radioativos da Água/química , Sulfato de Cálcio , Minerais , Tamanho da Partícula , Radioatividade , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Urânio/análise , Poluentes Radioativos da Água/análise
9.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164377

RESUMO

Radiological monitoring is fundamental for compliance with radiological protection policies in the aftermath of radiological events, such as nuclear accidents, terrorism, and out-of-commission uranium mines. An effective strategy for radiation monitoring is to use radiation detectors coupled with Unmanned Aerial Vehicles (UAVs), enabling for quicker surveillance of large areas without involving the need of human presence in the target area. The main aim of this study was to formulate the parameters for a UAV flight strategy in preparation for future field measurements using Geiger-Muller Counters (GMC) and Cadmium Zinc Telluride (CZT) spectrometers. As a proof of concept, the prepared flight strategy will be used to survey out-of-commission uranium mines in northern Portugal. Procedures to assure the calibration of the CZT and verification of the GMCs were conducted, as well as a sensitivity analysis of the sensors considering different acquisition times, distance to source, and detector response time. This article reports specific parameters, such as UAV distance to ground, time of exposition, speed, and the methodology to perform the identification and calculate the activity of possible radioactive sources. An effective flight strategy is also presented, aiming to use radiation detectors coupled with UAVs to undertake extensive monitoring of areas with enhanced levels of environmental radiation, which is of prime importance due to the lasting hazardous effects of enhanced environmental radiation in the nearby ecosystem and population.


Assuntos
Técnicas Biossensoriais , Cádmio/química , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radiometria , Tecnologia de Sensoriamento Remoto , Telúrio/química , Zinco/química , Poluentes Radioativos do Ar/análise , Calibragem , Ecossistema , Humanos , Portugal , Radiografia
10.
Artigo em Inglês | MEDLINE | ID: mdl-31991884

RESUMO

Uranium (U) mining activities, which lead to contamination in soils and waters (i.e., leachate from U mill tailings), cause serious environmental problems. However, limited research works have been conducted on U pollution associated with a whole soil-water system. In this study, a total of 110 samples including 96 solid and 14 water samples were collected to investigate the characteristics of U distribution in a natural soil-water system near a U mining tailings pond. Results showed that U concentrations ranged from 0.09 ± 0.02 mg/kg to 2.56 × 104± 23 mg/kg in solid samples, and varied greatly in different locations. For tailings sand samples, the highest U concentration (2.56× 104 ± 23 mg/kg) occurred at the depth of 80 cm underground, whereas, for paddy soil samples, the highest U concentration (5.22 ± 0.04 mg/kg) was found at surface layers. Geo-accumulation index and potential ecological hazard index were calculated to assess the hazard of U in the soils. The calculation results showed that half of the soil sampling sites were moderately polluted. For groundwater samples, U concentrations ranged from 0.55 ± 0.04 mg/L to 3.36 ± 0.02 mg/L with a mean value of 2.36 ± 0.36 mg/L, which was significantly lower than that of percolating waters (ranging from 4.56 ± 0.02 mg/L to 12.05 ± 0.04 mg/L, mean 7.91 ± 0.98 mg/L). The results of this study suggest that the distribution of U concentrations in a soil-water system was closely associated with hydrological cycles and U concentrations decreased with circulation path.


Assuntos
Monitoramento Ambiental , Água Subterrânea/análise , Poluentes Radioativos do Solo/análise , Urânio/análise , Poluentes Radioativos da Água/análise , China , Mineração
11.
Environ Pollut ; 254(Pt B): 113110, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31479808

RESUMO

Abiotic reduction represents an attractive technology to control U(VI) contamination. In this work, an abiotic route of U(VI) reduction with humic acid at mineral surfaces is proposed and reaction mechanisms are addressed by periodic density functional theory calculations. Different influencing factors such as ligand effect, content of CO32- ligands and substituent effect are inspected. The coordination chemistry of uranyl(VI) surface complexes relies strongly on substrates and ligands, and the calculated results are in good agreements with experimental observations available. For the OH- ligand, two competitive mechanisms co-exist that respectively produce the U(IV) and U(V) species, and the former is significantly preferred because of lower energy barriers. Instead, the NO3- ligand leads to the formation of U(V) while for the Cl- ligand, the U(VI) surface complex remains very stable and is not likely to be reduced because of very high energy barriers. The U(V) and U(IV) complexes are the predominant products for low and high CO32- contents, respectively. Accordingly, the abiotic reduction processes with humic acid are efficient to manage U(VI) contamination and become preferred under basic conditions or at higher CO32- contents. The U(VI) reduction is further promoted by introduction of electron-donating rather than electron-withdrawing substituents to humic acid. Electronic structure analyses and vibrational frequency assignments are calculated for the various uranium surface complexes of the reduction processes, serving as a guide for future experimental and engineered studies. The molecular-level understanding given in this work offers an abiotic route for efficient reduction of U(VI) and remediation of U(VI)-contaminated sites at ambient conditions.


Assuntos
Substâncias Húmicas , Urânio/química , Poluentes Radioativos da Água/química , Eletroquímica , Elétrons , Ligantes , Minerais , Vibração
12.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974785

RESUMO

Two Bacillus atrophaeus strains, the first being a highly stress-resistant ATCC 9372 strain and the Ua strain identified from a chromium mine by our lab, differ in their abilities to tolerate and remove Uranium (VI) from contaminated water. An increase in U(VI) concentration in growth media led to a decrease in the tolerance and bio-remedial capacity of both strains. However, under high concentrations of U(VI) in the growth media, the ATCC 9372 strain demonstrated a higher tolerance and a higher removal capacity than the Ua strain. Two approaches, transcriptome sequencing and transgenic technology, were used to elucidate the relationship between particular genes within these two strains and their U(VI) removal capacity. Sequencing confirmed the expression of two genes unique to the Ua strain, previously designated ytiB and ythA. They encode putative proteins that show the highest levels of identity to carbonic anhydrase and cytochrome bd terminal oxidase I, respectively. Using the pBE-S DNA vector, ytiB and ythA were transformed into the ATCC 9372 strain of Bacillus atrophaeus. Under a U(VI) concentration of 120 mg/L, the removal rates of the transgenic ATCC 9372-ytiB and ATCC 9372-ythA strains decreased by 7.55% and 7.43%, respectively, compared to the removal rate of the control strain transformed with empty plasmid. The results suggest that both ythA and ytiB genes have a negative influence on the uranium removing capacity of Bacillus atrophaeus. This finding will help to elucidate the molecular mechanisms of uranium removal by bacteria.


Assuntos
Bacillus , Proteínas de Bactérias , Cromo/metabolismo , Microbiologia do Solo , Urânio/metabolismo , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Talanta ; 196: 515-522, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683399

RESUMO

We report here the investigation of using a luminescent europium organic framework, [Eu2(MTBC)(OH)2(DMF)3(H2O)4]·2DMF·7H2O (denoted as compound 1), for detecting of both Cu2+ and UO22+ with high sensitivity. Based on the spectroscopy analysis, compound 1 could selectively respond to Cu2+ and UO22+ ions among other selected monovalent, divalent, trivalent metal cations based on a turn-off mechanism. The detection limit of compound 1 towards Cu2+ ion was as low as 17.2 µg/L, which is much lower than the maximum tolerable concentration of Cu2+ in drinking water (2 mg/L) defined by United States Environmental Protection Agency. On the other hand, the detection limit towards UO22+ ions is 309.2 µg/L, which could be used for detecting uranium in relative severely contaminated areas. The concentration-dependent luminescence intensity evolution process could be fully understood by the absorption kinetics and isotherm investigations. Furthermore, the quenching mechanism was elucidated by the UV-vis, excitation, luminescence, and lifetime studies. Compound 1, as the first MOF based luminescence probe for both Cu2+ and UO22+ ions, provides insight into developing MOF-based multifunctional sensors for both nonradioactive and radioactive elements.

14.
Environ Monit Assess ; 190(12): 746, 2018 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-30474744

RESUMO

A study was undertaken to decipher the uranium distribution in relation to a number of hydrogeological factors in groundwater of southwest Punjab. Existing geological information for the region suggests that the shallow alluvial aquifer extends up to 50-70 m below ground level (bgl) and is in turn underlain by a deeper aquifer which extends to a depth of 250 m bgl. The presence of clayey units limits the vertical mixing of groundwater between the shallow and deep aquifers. Water level data (averaged over 5 years period) indicates that the south and southwestern regions of the study area have shallow water levels (3-5 m bgl) while the north and northeast regions have deep water levels (20-28 m bgl). This difference in water levels is found to be increasing with time. Higher concentrations of uranium occur in the central, southern, and southwestern parts of the study area where the water table occurs at shallow depth. Groundwater in the northern and northeastern parts of the study area shows U concentration within permissible levels for potable use (< 30 µg/L) while the highest concentration of U (341 µg/L) was found in the central part of the study area. Seasonal variation in dissolved U concentration is found to be statistically significant. The observed increases in U concentrations during the post-monsoon season are due to the addition of bicarbonate from the root zone as well as increased dissolved oxygen, nitrate, and sulphate concentration (oxic condition) in the groundwater while the decrease in U concentration is attributed to quick recharge by precipitation through sand dunes and contribution of surface water. Deeper groundwater does not show much seasonal variation in dissolved U concentration. Correlation between U and other hydrochemical parameters was evaluated. Cluster analysis of the data also indicates the oxidative mobilization of U from the sediments. Based on the lithological, hydrogeological, and dissolved U data, a schematic map is prepared depicting the various factors affecting the U distribution in alluvial aquifers, which can also be applied to other regions of similar hydrogeological setup. Graphical abstract ᅟ.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Urânio/análise , Poluentes Químicos da Água/análise , Poluentes Radioativos da Água/análise , Índia , Movimentos da Água
15.
Sci Total Environ ; 633: 981-988, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758919

RESUMO

The goal of the present investigation was to measure 234U/238U activity ratios in pore waters of Lake Neusiedl, Austria, in order to learn more about uranium in groundwaters of the Lake Neusiedl/Seewinkel region. Pore waters of waterlogged sediments (at 1m depth) in the littoral zone of Lake Neusiedl were analyzed. The pore water samples were collected in the National Park Lake Neusiedl/Seewinkel from pristine sites that were not influenced by neighboring fertilized fields or vineyards. Uranium isotopes were extracted from 1.5L of sediment pore water and measured by α-particle spectrometry. Uranium concentrations were found to be unexpectedly high (up to 853µgL-1) especially in pore waters of salt-rich locations. 234U/238U activity ratios were between 0.91 and 1.09 for all pore water samples, irrespective of their origin from the east or west littoral zones of the lake. Uranium and mineral salts concentrations were strongly correlated. 222Rn concentrations were low (between 22 and 42BqL-1). The results provide insight into the high degree of mobility of U(VI) in sedimentary environments, in the presence of migrating Na2SO4-type saline waters.

16.
J Environ Radioact ; 189: 168-174, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29679817

RESUMO

Recent reports have drawn attention to the uranium contamination arising from coal mining activities in the Yili region of Xinjiang, China due to the mixed distribution of uranium and coal mines, and some of the coal mines being associated with a high uranium content. In this study, we have collected water samples, solid samples such as soil, mud, coal, and coal ash, and hair and urine samples from local populations in order to evaluate the uranium level in this environment and its implications for humans in this high uranium coal mining area. Our results showed that uranium concentrations were 8.71-10.91 µg L-1 in underground water, whereas lower levels of uranium occurred in river water. Among the solid samples, coal ash contained fairly high concentrations of uranium (33.1 µg g-1) due to enrichment from coal burning. In addition, uranium levels in the other solid samples were around 2.8 µg g-1 (the Earth's average background value). Uranium concentrations in hair and urine samples were 22.2-634.5 ng g-1 (mean: 156.2 ng g-1) and 8.44-761.6 ng L-1 (mean: 202.6 ng L-1), respectively, which are significantly higher than reference values reported for unexposed subjects in other areas. Therefore, these results indicate that people living in this coal mining area have been subjected to uranium exposure for long periods of time.


Assuntos
Minas de Carvão , Exposição à Radiação/estatística & dados numéricos , Poluentes Radioativos/análise , Urânio/análise , China , Água Subterrânea/química , Cabelo/química , Humanos , Exposição à Radiação/análise , Poluentes Radioativos/urina , Urânio/urina
17.
J Environ Radioact ; 184-185: 152-157, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29395432

RESUMO

The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 µg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 µg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 µg/g while Xiangzhu No. 7's shoots could reach 20 µg/g only when the uranium treatment concentrations were 275 µg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were <1. Probably wild ramie was a uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 µg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated.


Assuntos
Biodegradação Ambiental , Boehmeria/fisiologia , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Boehmeria/química , China , Poluentes Radioativos do Solo/análise , Urânio/análise
18.
J Environ Radioact ; 180: 1-8, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28968541

RESUMO

The occurrence of uranium (U) and depleted uranium (DU)-contaminated wastes from anthropogenic activities is an important environmental problem. Insoluble humic acid derived from leonardite (L-HA) was investigated as a potential adsorbent for immobilizing U in the environment. The effect of initial pH, contact time, U concentration, and temperature on U(VI) adsorption onto L-HA was assessed. The U(VI) adsorption was pH-dependent and achieved equilibrium in 2 h. It could be well described with pseudo-second-order model, indicating that U(VI) adsorption onto L-HA involved chemisorption. The U(VI) adsorption mass increased with increasing temperature with maximum adsorption capacities of 91, 112 and 120 mg g-1 at 298, 308 and 318 K, respectively. The adsorption reaction was spontaneous and endothermic. We explored the processes of U(VI) desorption from the L-HA-U complex through batch desorption experiments in 1 mM NaNO3 and in artificial seawater. The desorption process could be well described by pseudo-first-order model and reached equilibrium in 3 h. L-HA possessed a high propensity to adsorb U(VI). Once adsorbed, the release of U(VI) from L-HA-U complex was minimal in both 1 mM NaNO3and artificial seawater (0.06% and 0.40%, respectively). Being abundant, inexpensive, and safe, L-HA has good potential for use as a U adsorbent from aqueous solution or immobilizing U in soils.


Assuntos
Substâncias Húmicas , Minerais/química , Modelos Químicos , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Cinética , Solo , Urânio/análise , Poluentes Radioativos da Água/análise
19.
J Hazard Mater ; 297: 183-90, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25956648

RESUMO

The present work report the unusual uranium uptake by foodstuff, especially those rich in carbohydrates like rice when they are cooked in water, contaminated with uranium. The major staple diet in South Asia, rice, was chosen to study its interaction with UO2(2+), the active uranium species in water, using inductively coupled plasma mass spectrometry. Highest uptake limit was checked by cooking rice at very high uranium concentration and it was found to be good scavenger of uranium. To gain insight into the mechanism of uptake, direct interaction of UO2(2+) with monosaccharides was also studied, using electrospray ionization mass spectrometry taking mannose as a model. The studies have been done with dissolved uranium salt, uranyl nitrate hexahydrate (UO2(NO3)2·6H2O), as well as the leachate of a stable oxide of uranium, UO2(s), both of which exist as UO2(2+) in water. Among the eight different rice varieties investigated, Karnataka Ponni showed the maximum uranium uptake whereas unpolished Basmati rice showed the minimum. Interaction with other foodstuffs (potato, carrot, peas, kidney beans and lentils) with and without NaCl affected the extent of chemical interaction but was not consistent with the carbohydrate content. Uranium interaction with D-mannose monitored through ESI-MS, under optimized instrumental parameters, identified the peaks corresponding to uranyl adduct with mannose monomer, dimer and trimer and the species were confirmed by MS/MS studies. The product ion mass spectra showed peaks illustrating water loss from the parent ion as the collision energy was increased, an evidence for the strong interaction of uranium with mannose. This study would constitute the essential background for understanding interaction of uranium with various foods. Extension of this work would involve identification of foodstuff as green heavy metal scavengers.


Assuntos
Culinária , Contaminação de Alimentos/análise , Oryza , Urânio/análise , Água/química , Carboidratos/química , Cromatografia Líquida , Glucose/química , Manose/química , Microscopia Eletrônica de Varredura , Nitratos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Espectrometria de Massas em Tandem , Temperatura , Raios Ultravioleta , Compostos de Urânio/química , Poluentes Químicos da Água/análise
20.
J Environ Radioact ; 138: 1-10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25129324

RESUMO

An assessment of the radioactive and chemical contamination of the water resources at the former uranium mines and processing sites of Mailuu-Suu, in Kyrgyzstan, was carried out. A large number of water samples were collected from the drinking water distribution system (DWDS), rivers, shallow aquifers and drainage water from the mine tailings. Radionuclides and trace metal contents in water from the DWDS were low in general, but were extremely high for Fe, Al and Mn. These elements were associated with the particle fractions in the water and strongly correlated with high turbidity levels. Overall, these results suggest that water from the DWDS does not represent a serious radiological hazard to the Mailuu Suu population. However, due to the high turbidities and contents of some elements, this water is not good quality drinking water. Water from artesian and dug wells were characterized by elevated levels of U (up to 10 µg/L) and some trace elements (e.g. As, Se, Cr, V and F) and anions (e.g. Cl(-), NO3(-), SO4(2-)). In two artesian wells, the WHO guideline value of 10 µg/L for As in water was exceeded. As the artesian wells are used as a source of drinking water by a large number of households, special care should be taken in order to stay within the WHO recommended guidelines. Drainage water from the mine tailings was as expected highly contaminated with many chemicals (e.g. As) and radioactive contaminants (e.g. U). The concentrations of U were more than 200 times the WHO guideline value of 30 µg/L for U in drinking water. A large variation in (234)U/(238)U isotopic ratios in water was observed, with values near equilibrium at the mine tailings and far from equilibrium outside this area (reaching ratios of 2.3 in the artesian well). This result highlights the potential use of this ratio as an indicator of the origin of U contamination in Mailuu Suu.


Assuntos
Água Potável/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluentes Radioativos da Água/análise , Qualidade da Água , Água Doce/análise , Água Subterrânea/análise , Quirguistão , Monitoramento de Radiação , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...